Domination of generalized Cartesian products

نویسندگان

  • S. Benecke
  • Christina M. Mynhardt
چکیده

The generalized prism πG of G is the graph consisting of two copies of G, with edges between the copies determined by a permutation π acting on the vertices of G. We define a generalized Cartesian product G π H that corresponds to the Cartesian product G H when π is the identity, and the generalized prism when H is the graph K2. Burger, Mynhardt and Weakley [On the domination number of prisms of graphs, Discuss. Math. Graph Theory 24(2) (2004), 303–318] characterized universal doublers, i.e. graphs for which γ(πG) = 2γ(G) for any π. In general γ(G π Kn) ≤ nγ(G) for any n ≥ 2 and permutation π, and a graph attaining equality in this upper bound for all π is called a universal multiplier. We characterize such graphs and consider a similar problem for the product G π Cn.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the outer independent 2-rainbow domination number of Cartesian products of paths and cycles

‎Let G be a graph‎. ‎A 2-rainbow dominating function (or‎ 2-RDF) of G is a function f from V(G)‎ ‎to the set of all subsets of the set {1,2}‎ ‎such that for a vertex v ∈ V (G) with f(v) = ∅, ‎the‎‎condition $bigcup_{uin N_{G}(v)}f(u)={1,2}$ is fulfilled‎, wher NG(v)  is the open neighborhood‎‎of v‎. ‎The weight of 2-RDF f of G is the value‎‎$omega (f):=sum _{vin V(G)}|f(v)|$‎. ‎The 2-rainbow‎‎d...

متن کامل

Packing and Domination Invariants on Cartesian Products and Direct Products

The dual notions of domination and packing in finite simple graphs were first extensively explored by Meir and Moon in [15]. Most of the lower bounds for the domination number of a nontrivial Cartesian product involve the 2-packing, or closed neighborhood packing, number of the factors. In addition, the domination number of any graph is at least as large as its 2-packing number, and the invaria...

متن کامل

A Note on the Domination Number of the Cartesian Products of Paths and Cycles

Using algebraic approach we implement a constant time algorithm for computing the domination numbers of the Cartesian products of paths and cycles. Closed formulas are given for domination numbers γ(Pn Ck) (for k ≤ 11, n ∈ N) and domination numbers γ(Cn Pk) and γ(Cn Ck) (for k ≤ 7, n ∈ N).

متن کامل

Power domination in cylinders, tori, and generalized Petersen graphs

A set S of vertices is defined to be a power dominating set (PDS) of a graph G if every vertex and every edge in G can be monitored by the set S according to a set of rules for power system monitoring. The minimum cardinality of a PDS of G is its power domination number. In this article, we find upper bounds for the power domination number of some families of Cartesian products of graphs: the c...

متن کامل

Total domination number of grid graphs

We use the link between the existence of tilings in Manhattan metric with {1}-bowls and minimum total dominating sets of Cartesian products of paths and cycles. From the existence of such a tiling, we deduce the asymptotical values of the total domination numbers of these graphs and we deduce the total domination numbers of some Cartesian products of cycles. Finally, we investigate the problem ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Mathematics

دوره 310  شماره 

صفحات  -

تاریخ انتشار 2010